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8.4.1 OPTIMALITY
CONDITIONS FOR EQUALITY
CONSTRAINTS



IFT tor optimality conditions 1n the

equality-only case
e Problem: [|(NLP)min f(x)subjecttoc(x)=0;c:R"—R"

* Assumptions:

1. X isa solution
2. LICQ: Ve(x) has full row rank.

e From LICQ Ax :(if,;n:;);v% (x*)eRmx’”;VcH (x*) invertible.
e From IFT:
EIN(x*),‘P(xD) ,N(x;)such that x € N(x*) NQe x, = ‘P(xp)

e Asaresult x* isa solution of NLP iff x,

solves unconstrained problem: min,_ ( X, P ( X, ))




Properties of Mapping

e From IFT:

c(xD,‘P(xD )) =0= prc(xp,‘l’(xp))+ Vch(xD,‘P(xD))VXD‘P(xD) =0

* Two important consequences

(1) VXD‘P(xD) = —[Vch(xD ,‘I’(xD ))} V.

(2)Z =

Il

D

n—m

V. ‘P(xp)

-1

Dc(xp,‘l’(xp))

= Ve(x)Z=0=Im[Z] =ker| Vc(x)]




First-order optimality conditions

* Optimality of unconstrained optimization problem

V., £ ¥ (xp))=0= V. o (xp))+ V., f(x;,ql(x;))vxp\}'(x;) =0=

-1

Vfo(x; ,‘P(x; )) — Yfo(x; ,‘I’(x*p))[Vch(xD N (xp ))} JVch(xD ,‘P(xp)) =0

AT
* The definition of the Lagrange Multiplier Result in
the first-order (Lagrange, KKT) conditions:

[ V. () V. £ (x)) } ,v{ V. el ¥(x)) V. el ¥(x5) }zo

Vf(x*)— ),TVC(x*) =0



A more abstract and general proof

* Optimality of unconstrained optimization problem

Dfo(x*D,‘P(x;)):O:>Vfo(x;,‘P(x;))+Vfo(x;,‘P(x*D))VxD‘P(x;):O:>fo(x*)Z:O
o USiﬁg kerM L ImM"; dim(kerM)+ dim(ImMT)z nr cols M
* We obtain: V,/(x)2=0=V f(x") eker(z")=Im| Ve(x')" |

* We thus obtain the optimality conditions:

dAeR" st. fo(x*)T = ch(x*)T A= fo(x*)— AV c(x*)=0



The Lagrangian

Definition £(x.1)=f(x)-A! ¢(x)
Its gradient VL (x.A) = | V/(x)-AT Ve(x).c(x)" |

Its Hessian v2r (x,1) =

Where V2 L(xA

Optimality conditions:

ViL(xA) Ve(x)!

Ve(x) 0

E?Wix ‘ (

VL(xA)=




Second-order conditions

o First, note that: Z'Vi.L(xp.¥(xp))Z=D;_. f(xp.¥(x5)) =0

* Sketch of proof: total derivatives in x; :

Dfo(xp ,‘P(xp)) = prf(xD N (xp )) — l(xp ,‘P(xp))T Vch(x; ,‘P(x*p )) =

V. {00 ¥ ()20 ¥ (5)):

Vfo(x;,‘P(x;)) = /l(xD ,‘P(xp))T Vch(x; ,‘P(x; ))

e Second derivatives:

DxDfo(xp ,‘P(xp )) = prf(xp ,‘P(xD )) — ),(xD ,‘P(xp))T prc(xp,‘f‘(xp)) —

VXDXDL((XD ¥ (xD )) ’;L(XD ""P(xp ))) + prqj (xD )T V’“sz)ﬁ ((xD ’LP(xD )) ’)L(xD X3 (XD )))

-D,, (/”L(xD ,‘P(xD ))T )Vch(xD ,‘P(xD ))



Computing Second-Order

Dertvatives
* Expressing the second dertvatives of Lagrangian

T

V, P ¥ (50)) = A0 ¥ () V. e W () =

D, [/l(xp,‘}‘(xp ))T }Vch(xD,‘P(xD)) =D, Vfo(xD,‘P(xD ))— \)V(xp,‘P(xD))T V. c(xp,‘l’(xp)) =

. H

inactive

Vo

DXDVXHﬁ[(xp,w(xp)),@(xp,‘i’(xp))i] = VXDVxHﬁ((xD,‘P(xD)),/l(xp,‘i’(xp))T)+

inactive

V. () VxHVxHE((XD W () A0, ¥ (x,))'

* Solve for total derivative of multiplier and
replace conclusion follows.



Summary: Necessary Optimality

Conditions
* Summary:

Vﬁ(x*,ﬂ,*) =0; ZTVixL(x; ,‘P(x;))Z == ()

* Rephrase first order:
Vxﬁ(x*,l*) =0

* Rephrase second order necessary conditions.

\% c(x*)w =0= wTViXL(x*,/'L*)w >0

X



Sutticient Optimality Conditions

* The point is a local minimum if LICQ and the
following holds:
(l)Vxﬁ(x*,ﬂt*) =0; (2)ch(x*)w =0=>d0>0 wTVix[,(x*,?L*)w > o ||w|’
* Proof: By IFT, there is a change of variables
such that

ue N(0)cR"™"u e x(u); Fe N(x'),c(X)=0 & Jii € N'(0); = x(if)
ch(x*)Vux(iZ)

= 0; Z=V x(i)

* The original problem can be phrased as

min,, f(x(u))



Sutticient Optimality Conditions

* We can now piggy back on theory of

unconstrained optimization, noting that.
Vuf(x(u))‘uzo = Vxﬁ(x* ,/1*) =0;
mef(x(u))‘ = ZTVixﬁ(x*,l*)Z =0;Z=V x(u)

* Then from theory of unconstrained optimization

we have a local isolated minimum at O and thus the
original problem at x’. (following the local
isomorphism above)



Another Essential Consequence

e If LICQ+ second-order conditions hold at the
solution x" , then the following matrix must be

nonsingular (EXPAND).
V:L (x* ,ﬂ,*) ch(x*)
Vie (x*) 0

* The system of nonlinear equations has an
invertible Jacobian,

V()

c(x)




8.4.2 FIRST-ORDER
OPTIMALITY CONDITIONS
FOR MIXED EQ AND INEQ
CONSTRAINTS



The Lagrangian

* BEven in the general case, it has the same
expression

L(x)=f(x)= 2 Ac(x)

ieUA



First-Order Optimality Condition

Theorem

Suppose that x* is a local solution of (12.1), that the functions f and c; in (12.1) are
continuously differentiable, and that the LICQ holds at x*. Then there is a Lagrange multiplier
vector \*, with components oY, i € £ UZ, such that the following conditions are satisfied at

(x*, 1*%)

ViL(x*, 1) =0, (12.34a)
ci(x*)=0, foralli €&, (12.34b)
ci(x*) >0, foralli eZ, (12.34¢)

Af >0, foralli eZ, (12.34d)
Aici(x*) =0, foralli e EUT. (12.34e)

Equivalent Form:

VF(x')= A% Ve ) (x7) =0 = Multipliers are unique !!



Sketch of the Proof

 If x is a solution of the original problem, it is
also a solution of the problem.

min f (x) subject to C () (x)=0
* From the optimality conditions of the problem
with equality constraints, we must have (since

LICQ holds)

IH A, }ieA(x*) such that Vf(x*)— Z A Ve (x*) =0

ieA(x")

* But I cannot yet tell by this argument ﬂi >0



Sketch of the Proof: The sign of the

o multiplier
* Assume now one multiplier has the “wrong”

sign. That 1s *
jeA(x )ﬂI, A, <0

* Since LICQ holds, we can construct a feasible
path that “takes oft” from that constraint

(inactive constraints do not matter locally)
d

° C v ()?(t)) =te;, = X(1)eQ Define b= Ei(r)tzo = Ve, b=e¢
d ./ . AT
” F(F(r)_ =VF(x') b= A Veyyb=24<0 =

3t,>0, f(%(1,))<f(%(0))=f(x"), CONTRADICTION!!



Strict Complementarity

* It 1s a notion that makes the problem look
“almost” like an equality.

Definition 12.5 (Strict Complementarity).
Given a local solution x* of (12.1) and a vector A* satisfying (12.34), we say that the

strict complementarity condition holds if exactly one of A" and c;(x*) is zero for each index
i € 1. In other words, we have that A¥ > 0 for eachi € T N A(x*).



8.5 SECOND-ORDER
CONDITIONS



Critical Cone

* The subset of the tangent space, where the
objective function does not vary to first-order.

* The book definition.

C(x*, %) = {w e F(x*) | Ve (x*)Tw =0,alli € A(x*) NZ with AF > 0}.

* An even simpler equivalent definition.

C(x*,?L*):{weTQ(x*)‘Vf(x*)Twzo}



Rephrasing of the Critical Cone

* By investigating the definition

T

Ve, (x') w=0 ief

we(f()c*,ﬂ,*)c>< Ve, ) w=0 ieA(x*)ﬂI A >0

Ve, ) w=0 ieA(x*)ﬂI A =0

* In the case where strict complementarity holds,
the cones has a MUCH simplex expression.

weC(x*,/l*)<:>Vci(x*)w=O Vi eA(x*)



Statement of the Second-Order

Conditions

Theorem 12.5 (Second-Order Necessary Conditions).
Suppose that x* is a local solution of (12.1) and that the LICQ condition is satisfied. Let
L* be the Lagrange multiplier vector for which the KKT conditions (12.34) are satisfied. Then

wTfo,C(x*, A9 )w >0, forallw e C(x*, A*%). (12.57)

* How to prove this? In the case of Strict
Complementarity the critical cone is the same as
the problem constrained with equalities on
active index.

* Result follows from equality-only case.



Statement of second-order sufficient

conditions

Theorem 12.6 (Second-Order Sufficient Conditions).
Suppose that for some feasible point x* € R" there is a Lagrange multiplier vector A*

such that the KKT conditions (12.34) are satisfied. Suppose also that
w! V2 L(x*, 2¥)w >0, forallw € C(x*, 1*), w # 0. (12.65)

Then x* is a strict local solution for (12.1).

* How do we prove this? In the case of strict
complementarity again from reduction to the equality

case.
x =argmin_ f(x) subjecttoc,(x)=0



How to derive those conditions in

the other caser?
* Use the slacks to reduce the problem to one
with equality constraints.

minxe]R" ,zeR™M | f(X)
st. c; (x) =0
[c,(x)]j—zjz. =0 j=L2,..n

* Then, apply the conditions for equality
constraints.

* I will assign 1t as homework.



Summary: Why should I care about

Lagrange Multipliers?

* Because it makes the optimization problem in

principle equivalent to a nonlinear equation.

v.L(x A

e (x)

=(0; det

| VAL(xA) Ve (x)

Vie, (x*) 0

#0

* I can use concepts from nonlinear equations

such as Newton’s for the algorithmics.
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9.1 TYPES OF CONSTRAINED
OPTIMIZATION
ALGORITHMS



Types of Optimization Algorithms

* All of the algorithms solve iteratively a simpler
problem.
— Penalty and Augmented Lagrangian Methods.
— Sequential Quadratic Programming.

— Interior-point Methods.

* The approach follows the usual divide-and-

conquer approach:
* Constrained Optimization-
* Unconstrained Optimization
* Nonlinear Equations

* Linear Equations



Quadratic Programming Problems

* Algorithms for such problems are interested to
explore because
— 1. Thetr structure can be efficiently exploited.

— 2. They form the basis for other algorithms, such as
augmented Lagrangian and Sequential quadratic
programming problems.

min ¢g(x) = IxTGx +x"c
X =

subjectto a x = b;, 1 €&,

a: x > b;, 1 €T,



Penalty Methods

* Idea: Replace the constraints by a penalty term.

* Inexact penalties: parameter driven to infinity to
recover solution. Example:

x = argmin f(x) subject to ¢(x)=0 <

u * o ‘LL *
= argmin f(x Zc )i x =lm __x" =x

165 .
Solve with unconstrained

optimization
* Exact but nonsmooth penalty — the penaf

parameter can stay finite.

x =argmin f(x) subject to c(x)=0 < x =argmin f(x)+ ‘LLZ‘C

e



Augmented lLagrangian Methods

* Mix the Lagrangian point of view with a penalty
point of view.

x = argmin f(x) subject to ¢c(x)=0 <

x** = argmin f(x) Z ‘ch

ief 165

>l<_ . ‘LL,A«
x =lim, ..x"" forsome u=p,>0



Sequential Quadratic Programming

Algorithms

Solve successtvely Quadratic Programs.

min %pTka+Vf(xk)

p
subjectto Ve, (x,)d+¢,(x,)=0 ie€f
Ve, (x,)d+¢,(x,)=0 ieZ

It 1s the analogous of Newton’s method for the case
of constraints if B, =V? £(x,,4,)

But how do you solve the subproblem? It is possible
with extensions of simplex which I do not cover.

An option 1s BFGS which makes it convex.



Interior Point Methods

* Reduce the inequality constraints with a barrier

minx,s f(‘x)_tuzlog Si
i=1

subject to ¢,(x)=0 ief
c,(x)-s5,=0 iel

* An alternative, is use a penalty as well:

(¢,(x)=5) + = 2 (x))

min_ f(x ,uZlog S, o
ief

iel 2# iel

* And I can solve it as a sequence of
unconstrained problems!



9.2 MERIT FUNCTIONS AND
FILTERS



Feasible algorithms

If I can afford to maintain feasibility at all steps,
then I just monitor decrease 1n objective
function.

I accept a point if I have enough descent.

But this works only for very particular
constraints, such as linear constraints or bound
constraints (and we will use 1t).

Algorithms that do that are called feasible
algorithms.



Inteasible algorithms

 But, sometimes it s VERY HARD to enforce
feasibility at all steps (e.g. nonlinear equality
constraints).

* And I need feasibility only in the limit; so there is
benefit to allow algorithms to move on the outside of
the feasible set.

* But then, how do I measure progress since I have two,
apparently contradictory requirements:
— Reduce infeasibility (e.g. 2[e;(x)+ 2 max{~c,(x).0} )
— Reduce objective function. le

— It has a multiobjective optimization nature!



9.2.1 MERIT FUNCTIONS



Merit function

One idea also from multiobjective optimization:
minimize a weighted combination of the 2

criteria.

o(x)=w, f(x)+w, |:Z‘Ci (x)‘ + Zmax{—cl. (x) ,O}}; w,w, >0

ief i€l
But I can scale it so that the weight of the
objective is 1.

In that case, the weight of the infeasibility
measure is called “penalty parameter”.

I can monitor progress by ensuring that 9(x)
decreases, as in unconstrained optimization.



Nonsmooth Penalty Merit Functions

$r(x; ) = F)+p ) i) +p ) [c(x)]”,  [z]- = max{0, —z).

rec (el

e [tis called the 11 merit function. - | Penalty parameter

* Sometimes, they can be even EXACT.

Definition 15.1 (Exact Merit Function).
A merit function ¢(x; ) isexact if there is a positive scalar u* such that forany u > p*,
any local solution of the nonlinear programming problem (15.1) is a local minimizer of (x; ).

We show in Theorem 17.3 that, under certain assumptions, the £; merit function
¢, (x; ) is exact and that the threshold value p* is given by

p* =max{|r7|, i € EUT},




Smooth and Exact Penalty

Functions
* Excellent convergence properties, but very
expensive to compute.

* Fletcher’s augmented Lagrangian:

$e(x; 1) = f(x) = A(x) elx) + i ) cilx)?,

=

Ax) = [A)AX)T]TAX)V £ (x).

* It 1s both smooth and exact, but perhaps
impractical due to the linear solve.



Augmented lLagrangian

 Smooth, but inexact.

Z Ac, +E 2 C;
* An update of the Lagrange Multlpher is needed.

* We will not uses it, except with Augmented
Lagrangian methods themselves.



Line-search (Armijo) for

Nonsmooth Merit Functions

$r(xs ) = F)+p ) e +p )Y [ax)],

ie& i€l
How do we carry out the “progress search™?

That 1s the line search or the sufficient reduction
in trust region?

In the unconstrained case, we had
f(x)=f(x +B"d)2-pp"Vf(x,) d; 0<B<10<p<05

But we cannot use this anymore, since the
function is not differentiable.



Directional Derivatives of

Nonsmooth Merit Function
$r(x;p) = fFx)+p ) la)] +p ) leix)],
= iel
* Nevertheless, the tunction has a directional
derivative (follows from properties of max
function). EXPAND

Do) p) =l O PHIZOEM a1}, p) = man (V1o Vi)

* Line Search:  ¢(x..u)-¢(x, +B"pett)2—pB"D(9(x,. 1), P, );

° T]f tR 1
ust Reglon O(x,.t)— 0 (x, + B"pept) 21, (m(0)—m(p,));

0<n <05



And .... How do I choose the

penalty parameter?

VERY tricky issue, highly dep

penalty function used.

endent on the

For the 11 function, guideline is:

p* = max{|A7|, i € EUT]},

But almost always adaptive. Criterion: If
optimality gets ahead of feasibility, make penalty

parameter more stringent.

E.g 11 tunction: the max ot current value of

multipliers plus safety factor (]

XPAND)



9.2.2 FILTER APPROACHES



Principles of filters

* Originates in the multiobjective optimization
philosophy: objective and infeasibility

h(x) =) lei()| + ) _lai(x)],

ie€ iel
* The problem becomes:

min f(x) and mxin h(x).



The Filter approach

h(x)A

h(x) A N
A\
\
\
\
\
‘\
\
\
\

(ﬁ"hk) \‘. (ﬁc'hk)

. \

isovalue of '«
. o \

' (f: hi) merit function (f; .h;)

b \

> fix) > fix)

Definition 15.2.
(a) A pair (fi, hi) is said to dominate another pair ( fi, h;y) if both fy < f; and hy < hy.

(b) Aflter is a list of pairs ( fi, h;) such that no pair dominates any other.

(c) An iterate xi is said to be acceptable to the filter if ( fi, hy) is not dominated by any pair
in the filter.



Some Refinements

* Like in the line search approach, I cannot accept

i~
—{V
A 4 p

“RY decrease since I may never converge.

e Modification:

A trial iterate x™ is acceptable to the filter if, for all pairs (fj, & ;) in the filter, we have that

f(xT) < fj — Bh; or h(x™) < hj— Bh;, B~10" (15.33)



9.3 MARATOS EFFECT AND
CURVILINEAR SEARCH



Unfortunately, the Newton step may

not be compatible with penalty
This 1s called the Maratos

effect.

Problem:

min f(x;, x2) = 2(x] + x5 — 1) — x,

x12+x22—1=0.

Note: the closest point on
search direction (Newton)
will be rejected !

So fast convergence does

not occur



Solutions?

Use Fletchetr’s function that does not suffer
from this problem.

Following a step: Aipx + clx) = O.

Use a correction that satisfies  Agpr + c(xx + pr) = 0.
pr = —A] (A Al Yelxr + pr),

Followed by the update or line search:

y Xk + px + Pr xk+Tpk+‘L'2[A?k

Since c(x, +p,+D,)= O(ka —X*H3) COmpared to c(x, +p)= O(ka _X*Hz)
corrected Newton step is likelier to be accepted.
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10.1 GRADIENT PROJECTIONS
FOR QPS WITH BOUND
CONSTRAINTS



Projection

min ¢g(x) = xI'Gx+xTe
X

The problem: subjectto | < x <u,

Like in the trust-region case, we look for a Cauchy

point, based on a projection on the feasible set.

G does not have to be psd (essential for Augl.ag)

The projection operator:

Plx,l,u) = 1

[,‘ if X < l,’,

Xj if X; € [Ii,ll,‘],

U; if Xi > U;.



The search path

* Create a plecewise linear
path which 1s feasible (as
opposed to the linear one
in the unconstrained case)
by projection of gradient.

x(t) = |P(x —tg,l,u),

g:GX‘i’C:_

X(13)




Computation of breakpoints

* Can be done on each component individually

 (xi —u;)/gi ifg <Oandu; < +o0,
I = { (x,- —[,')/g,' ifg,' > Oandl,- > —00Q,

| 00 otherwise.

* Then the search path becomes on each

component: )
) xi —tgi ift <,
Xi\f) = _
' x;i — t;g; otherwise.



Line Search along piecewise linear

path

* Reorder the breakpoints eliminating duplicates
and zero values to get

0<1,<t,<...

* The path:

x(t) = x(tj—y) + (At)p! 7, At =t —tj, €[0,t; —tj1],

e Whose direction is:

j_l _gl lftj—l < ;t'a

0 otherwise.



Line Search (2)

Along each piece, 1.1, ] find the minimum of the

quadratic |

ExTGx +c'x

This reduces to analyzing a one dimensional
quadratic form of t on an interval.

If the minimum is on the right end of interval,
we continue.

If not, we found the local minimum and the

Cauchy point.



Subspace Minimization

e Active set of Cauchy Point

Ax) ={i|x;f =1; or x; = u;}.

* Solve subspace minimization problem

mrin q(x) = %xTGx +xTe
| subjectto  x; = x;, i € A(x"),
li <xi <uj, 1 & A(x°).
* No need to solve exactly. For example truncated
CG with termination if one inactive variable
reaches bound.



Gradient Projection for QP

Algorithm 16.5 (Gradient Projection Method for QP).
Compute a feasible starting point x";
for k=0,1,2,...
if x* satisfies the KKT conditions for (16.68)
stop with solution x* = x*;
Set x = x* and find the Cauchy point x¢;
Find an approximate solution x™ of (16.74) such that g(x™) < g(x)
and x is feasible;
xk+1 «— x+;

end (for)

Or, equivalently, if projection does not advance from 0.



